各级间的阻尼性能比较
研究级:角落顺应性数据可测量工作台响应校准锤冲击的位移。300 Hz以下的无响应表明具有极高的阻尼和出色的整体结构性能。顺应性在一个48 x 96 x 12英寸的工作台上进行测量。
科学级:角落顺应性数据显示,其具有比研究级更高的峰值顺应性值。顺应性在一个48 x 96 x 12英寸的工作台上进行测量。
实验室级:角落顺应性数据显示在工作台的共振频率下具有更高的放大率。顺应性在一个48 x 96 x 12英寸的工作台上进行测量。
结构阻尼
TMC长期以来一直坚持光学顶部的干式阻尼优于油基阻尼器的理念。油的特性会随着时间的推移而改变,而隐藏的油箱总是有被最终用户在改造系统时刺穿的危险。
我们的结构共振阻尼方法一直基于“宽带阻尼”的方法。“调谐阻尼”或使用调谐质量阻尼器与顶部弯曲模式异相共振是一种危险的方法。首先,它假设阻尼器可以设置为与顶部的共振频率完全一致。光学顶部的共振频率将根据负载、负载分布、温度甚至阻尼器本身而变化。因此,在实践中,难以将阻尼器调谐到顶部的共振。此外,它还假设,当需要注意许多二次弯曲和扭曲模式时,只有最低共振频率才需要阻尼。
更重要的是,采用调谐质量阻尼器来抑制结构共振的概念并不完善。调谐阻尼仅在阻尼离散共振时才有效,并不适合用于阻尼宽带结构共振。简单来说,通过创建联接的质量系统,调谐阻尼器将结构共振“分裂”成两个共振。
TMC专有的宽带阻尼技术是阻尼光学顶部的最有效方法。这种方法适用于整个感兴趣的频率范围,在顶部的主要、次要和更高的共振频率下耗散能量。此外,增加顶部的重量不会影响性能。
TMC的CleanTop采用了最先进的结构分析和设计方法。上面所示的操作偏转形状通过使用一种称为激光扫描振动测量法(LSV)的技术进行测量。LSV是市场上最灵敏、最准确的非接触式振动测量技术之一。它使用激光多普勒效应来测量整个工作台的行为而不是一个离散点的行为。
结构阻尼性能总结
TMC光学顶部具有无与伦比的保证性能水平。此外,通过三级宽带阻尼和三种环境选择,TMC在性能水平的选择方面具有最大的灵活性。最大阻尼水平的保证最大顺应性水平如下图所示。标准阻尼水平提供的顺应性水平比表中的水平高四倍。建议仅对非敏感应用采用最小阻尼水平。这些曲线总结了TMC光学顶部的保证性能水平。此外,还提供了三个可用阻尼级别的台面角落顺应性数据。数据通过冲击测试和使用一磅校准锤、加速计和双通道频谱分析仪获得。如这些示例所示,实际测量的性能通常比我们保证的性能要好得多。